Production of disulfide-bonded proteins in Escherichia coli.

نویسنده

  • Mehmet Berkmen
چکیده

Disulfide bonds are covalent bonds formed post-translationally by the oxidation of a pair of cysteines. A disulfide bond can serve structural, catalytic, and signaling roles. However, there is an inherent problem to the process of disulfide bond formation: mis-pairing of cysteines can cause misfolding, aggregation and ultimately result in low yields during protein production. Recent developments in the understanding of the mechanisms involved in the formation of disulfide bonds have allowed the research community to engineer and develop methods to produce multi-disulfide-bonded proteins to high yields. This review attempts to highlight the mechanisms responsible for disulfide bond formation in Escherichia coli, both in its native periplasmic compartment in wild-type strains and in the genetically modified cytoplasm of engineered strains. The purpose of this review is to familiarize the researcher with the biological principles involved in the formation of disulfide-bonded proteins with the hope of guiding the scientist in choosing the optimum expression system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media

BACKGROUND The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression...

متن کامل

Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli.

Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli...

متن کامل

Erratum to: SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm

BACKGROUND Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein exp...

متن کامل

Comparison of Three Escherichia coli Strains in Recombinant Production of Reteplase.

BACKGROUND Escherichia coli (E. coli) is the most extensively used host for the production of recombinant proteins. However, most of the eukaryotic proteins are typically obtained as insoluble, misfolded inclusion bodies that need solubilization and refolding. Reteplase as a highly disulfide-bonded recombinant protein is an example of difficult to express protein in E. coli. METHODS In this s...

متن کامل

Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli

BACKGROUND The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently tho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current protocols in molecular biology

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2012